2,211 research outputs found

    The Need of Public Junior Colleges in Utah

    Get PDF
    “The need for junior colleges becomes more urgent from year to year. I would recommend that the legislature make provision for the establishment and maintenance of state junior colleges at such centers as it may deem advisable.” This is a quotation from state Superintendent C. N. Jensen. The following study is intended to answer, to a degree at least, the two questions inherent in this statement: namely, Is there a need for state junior colleges in Utah? If there is a need, where should they be established

    Combined Chondroitinase and KLF7 Expression Reduce Net Retraction of Sensory and CST Axons from Sites of Spinal Injury

    Get PDF
    Axon regeneration in the central nervous system is limited both by inhibitory extracellular cues and by an intrinsically low capacity for axon growth in some CNS populations. Chondroitin sulfate proteoglycans (CSPGs) are well-studied inhibitors of axon growth in the CNS, and degradation of CSPGs by chondroitinase has been shown to improve the extension of injured axons. Alternatively, axon growth can be improved by targeting the neuron-intrinsic growth capacity through forced expression of regeneration-associated transcription factors. For example, a transcriptionally active chimera of Krüppel-like Factor 7 (KLF7) and a VP16 domain improves axon growth when expressed in corticospinal tract neurons. Here we tested the hypothesis that combined expression of chondroitinase and VP16-KLF7 would lead to further improvements in axon growth after spinal injury. Chondroitinase was expressed by viral transduction of cells in the spinal cord, while VP16-KLF7 was virally expressed in sensory neurons of the dorsal root ganglia or corticospinal tract (CST) neurons. After transection of the dorsal columns, both chondroitinase and VP16-KLF7 increased the proximity of severed sensory axons to the injury site. Similarly, after complete crush injuries, VP16-KLF7 expression increased the approach of CST axons to the injury site. In neither paradigm however, did single or combined treatment with chondroitinase or VP16-KLF7 enable regenerative growth distal to the injury. These results substantiate a role for CSPG inhibition and low KLF7 activity in determining the net retraction of axons from sites of spinal injury, while suggesting that additional factors act to limit a full regenerative response

    National level indicators for gender, poverty, food security, nutrition and health in Climate-Smart Agriculture (CSA) activities

    Get PDF
    At the global, regional and national levels, governments, donors, research institutions, non-government organizations and private companies are more strategically linking climate change and agriculture development activities, through initiatives such as the Global Alliance for Climate-Smart Agriculture (CSA). In this context, it is necessary to have robust metrics and indicators for measuring progress towards CSA-related goals. This requires strategic selection of indicators to assess the type of impact (negative/positive) of adaptation and mitigation activities on specific societal groups (e.g. ethnic groups, women, youth, etc.) to ensure livelihoods are positively impacted by CSA interventions. Gender, poverty, food security, nutrition and health indicators have not been extensively used in CSA programming and planning to date. In this paper, we review a range of gender, poverty, food security, nutrition and health indicators relevant for national planning processes for CSA promotion and scale out. We focus on the CSA CPs developed by the International Center for Tropical Agriculture (CIAT) in collaboration with the CGIAR research program on Climate Change, Agriculture, and Food Security (CCAFS). The CSA CPs are being developed as an instrument to open dialogues on the baseline situation, identifying opportunities, and challenges for CSA in various countries. The CPs are generated by the CGIAR CCAFS program with national partners, especially those involved in CSA related planning processes, to feed into analytical multi-stakeholder processes to prioritize CSA investment portfolios for scale-up and scale out. Using a ranking system based on data relevance, availability, and applicability to multiple national contexts, we identified a set of indicators that respond to the need for better integration of gender, poverty, food security, nutrition and health concerns when approaching CSA. Strengthened integration of poverty reduction, food security and gender equality indicators into CSA assessments, including the CPs, has been identified by CCAFS as a priority to strengthen the focus on resilience/adaptation efforts, specifically highlighting evidences of gender differences. It can also serve to highlight potential gaps in availability of and access to resources and capacities to adopt CSA practices and technologies among different societal groups (women, men, youth, ethnic groups). Rather than re-invent new indicators, it is important that, where possible, existing national-level indicators can be repurposed for tracking CSA impacts over time on poverty reduction, food security and gender equality outcomes

    An inland sea high nitrate-low chlorophyll (HNLC) region with naturally high pCO2

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 60 (2015): 957–966, doi:10.1002/lno.10062.We present a time series of data for temperature, salinity, nitrate, and carbonate chemistry from September 2011 to July 2013 at the University of Washington's Friday Harbor Laboratories. Samples were collected at the Friday Harbor dock and pump house. Seawater conditions at Friday Harbor were high nitrate-low chlorophyll, with average nitrate and pCO2 concentrations of ∼ 25 ± 5 μmol L−1 and ∼ 700 ± 103 μatm (pH 7.80 ± 0.06). Transient decreases in surface water nitrate and pCO2 corresponded with the timing of a spring bloom (April through June). The high nitrate and pCO2 originate from the high values for these parameters in the source waters to the Salish Sea from the California Undercurrent (CU). These properties are due to natural aerobic respiration in the region where the CU originates, which is the oxygen minimum zone in the eastern tropical North Pacific. Alkalinity varies little so the increase in pCO2 is due to inputs of dissolved inorganic carbon (DIC). This increase in DIC can come from both natural aerobic respiration within the ocean and input of anthropogenic CO2 from the atmosphere when the water was last at the sea surface. We calculated that the anthropogenic “ocean acidification” contribution to DIC in the source waters of the CU was 36 μmol L−1. This contribution ranged from 13% to 22% of the total increase in DIC, depending on which stoichiometry was used for C/O2 ratio (Redfield vs. Hedges). The remaining increase in DIC was due to natural aerobic respiration.We thank The Educational Foundation of America (EFA) and National Science Foundation Field Station Marine Lab Program (FSML) (NSF DBI 0829486) for essential initial funding to JWM to develop the Ocean Acidification Experimental Lab (OAEL). Additional support was provided by NSF award EF1041213 to E. Carrington Ken Sebens for encouragement to involve students in this research as part of a FHL mini-apprenticeship course

    Comparison of monocyte human leukocyte antigen-DR expression and stimulated tumor necrosis factor alpha production as outcome predictors in severe sepsis: A prospective observational study

    Get PDF
    BACKGROUND: Identifying patients in the immunosuppressive phase of sepsis is essential for development of immunomodulatory therapies. Little data exists comparing the ability of the two most well-studied markers of sepsis-induced immunosuppression, human leukocyte antigen (HLA)-DR expression and lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-ɑ) production, to predict mortality and morbidity. The purpose of this study was to compare HLA-DR expression and LPS-induced TNF-ɑ production as predictors of 28-day mortality and acquisition of secondary infections in adult septic patients. METHODS: A single-center, prospective observational study of 83 adult septic patients admitted to a medical or surgical intensive care unit. Blood samples were collected at three time points during the septic course (days 1–2, days 3–4, and days 6–8 after sepsis diagnosis) and assayed for HLA-DR expression and LPS-induced TNF-ɑ production. A repeated measures mixed model analysis was used to compare values of these immunological markers among survivors and non-survivors and among those who did and did not develop a secondary infection. RESULTS: Twenty-five patients (30.1 %) died within 28 days of sepsis diagnosis. HLA-DR expression was significantly lower in non-survivors as compared to survivors on days 3–4 (p = 0.04) and days 6–8 (p = 0.002). The change in HLA-DR from days 1–2 to days 6–8 was also lower in non-survivors (p = 0.04). Median HLA-DR expression decreased from days 1–2 to days 3–4 in patients who developed secondary infections while it increased in those without secondary infections (p = 0.054). TNF-ɑ production did not differ between survivors and non-survivors or between patients who did and did not develop a secondary infection. CONCLUSIONS: Monocyte HLA-DR expression may be a more accurate predictor of mortality and acquisition of secondary infections than LPS-stimulated TNF-ɑ production in adult medical and surgical critically ill patients. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13054-016-1505-0) contains supplementary material, which is available to authorized users

    Spatiotemporal transcriptomic maps of whole mouse embryos at the onset of organogenesis

    Get PDF
    Spatiotemporal orchestration of gene expression is required for proper embryonic development. The use of single-cell technologies has begun to provide improved resolution of early regulatory dynamics, including detailed molecular definitions of most cell states during mouse embryogenesis. Here we used Slide-seq to build spatial transcriptomic maps of complete embryonic day (E) 8.5 and E9.0, and partial E9.5 embryos. To support their utility, we developed sc3D, a tool for reconstructing and exploring three-dimensional ‘virtual embryos’, which enables the quantitative investigation of regionalized gene expression patterns. Our measurements along the main embryonic axes of the developing neural tube revealed several previously unannotated genes with distinct spatial patterns. We also characterized the conflicting transcriptional identity of ‘ectopic’ neural tubes that emerge in Tbx6 mutant embryos. Taken together, we present an experimental and computational framework for the spatiotemporal investigation of whole embryonic structures and mutant phenotypes
    corecore